Physics-informed regression of implicitly-constrained robot dynamics

dc.contributor.advisorAllgöwer, Frank (Prof. Dr.-Ing.)
dc.contributor.authorGeist, Andreas René
dc.date.accessioned2023-02-24T12:22:09Z
dc.date.available2023-02-24T12:22:09Z
dc.date.issued2022de
dc.description.abstractThe ability to predict a robot’s motion through a dynamics model is critical for the development of fast, safe, and efficient control algorithms. Yet, obtaining an accurate robot dynamics model is challenging as robot dynamics are typically nonlinear and subject to environment-dependent physical phenomena such as friction and material elasticities. The respective functions often cause analytical dynamics models to have large prediction errors. An alternative approach to analytical modeling forms the identification of a robot’s dynamics through data-driven modeling techniques such as Gaussian processes or neural networks. However, solely data-driven algorithms require considerable amounts of data, which on a robotic system must be collected in real-time. Moreover, the information stored in the data as well as the coverage of the system’s state space by the data is limited by the controller that is used to obtain the data. To tackle the shortcomings of analytical dynamics and data-driven modeling, this dissertation investigates and develops models in which analytical dynamics is being combined with data-driven regression techniques. By combining prior structural knowledge from analytical dynamics with data-driven regression, physics-informed models show improved data-efficiency and prediction accuracy compared to using the aforementioned modeling techniques in an isolated manner.en
dc.identifier.other1837427453
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-127894de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12789
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12770
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc530de
dc.subject.ddc620de
dc.titlePhysics-informed regression of implicitly-constrained robot dynamicsen
dc.title.alternativePhysikalisch strukturierte Regression implizit-eingeschränkter Roboter Dynamikende
dc.typedoctoralThesisde
ubs.dateAccepted2022-06-01
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Systemtheorie und Regelungstechnikde
ubs.publikation.seitenxix, 127de
ubs.publikation.typDissertationde
ubs.thesis.grantorKonstruktions-, Produktions- und Fahrzeugtechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2022_geist_phd thesis_publication version v4.pdf
Size:
23.4 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: