A non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learning

dc.contributorCluster of Excellence Simulation Technology, University of Stuttgart - EXC 2075de
dc.contributor.authorKneifl, Jonas
dc.contributor.authorGrunert, Dennis
dc.contributor.authorFehr, Jörg
dc.date.accessioned2020-12-11T08:27:37Z
dc.date.available2020-12-11T08:27:37Z
dc.date.issued2020de
dc.description.abstractThe paper uses a nonlinear non-intrusive model reduction approach, to derive efficient and accurate surrogate models for structural dynamical problems. Therefore, a combination of proper orthogonal decomposition along with regression algorithms from the field of machine learning is utilized to capture the dynamics in a reduced representation. This allows highly performant approximations of the original system. In this context, we provide a comparison of several regression algorithms based on crash simulations of a structural dynamic frame.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-111984de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11198
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11181
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleA non-intrusive nonlinear model reduction method for structural dynamical problems based on machine learningen
dc.typepreprintde
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.publikation.noppnyesde
ubs.publikation.seiten10de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Kneifl_Grunert_Fehr_preprint_20.pdf
Size:
878.5 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: