Multiple Indicator Growth Mixture Models: eine statistische Simulation zur Performanzevaluation für sozialwissenschaftliche Analysen

Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Multiple Indicator Growth Mixture Modelle (MIGMM) kombinieren die Konstruktionsprinzipien von latenten Messmodellen, Wachstumskurvenmodellen und der latenten Klassenanalyse. MIGMMs sind somit analytische Werkzeuge für die empirische Sozialforschung, welche es ermöglichen eine Post-hoc-Identifikation und Beschreibung von Gruppenunterschieden hinsichtlich des zeitlichen Wandels durchzuführen und gleichzeitig die Messungen als latente Konstrukte zu berücksichtigen. Durch die Identifikation von unbeobachteten Subpopulationen lassen sich soziale Veränderungsprozesse und deren Unterschiede zwischen und innerhalb der unbeobachteten Subpopulationen untersuchen. Während einfache Growth Mixture Modelle schon anhand von zahlreichen Monte Carlo Studien evaluiert wurden, steht eine systematische Analyse der Leistungsfähigkeit von Multiple-Indicator-GMMs noch weitestgehend aus. Diese Simulationsstudie zielt darauf ab, die Performanz von MIGMMs unter verschiedenen Datensituationen systematisch zu evaluieren, wobei insbesondere zeitliche, gruppenspezifische und kombinierte Invarianzverletzungen der latenten Messmodelle im Fokus sind. Dazu wurden folgende Bedingungen manipuliert: Messinvarianz der latenten Konstrukte, Klassendistanz, Klassenanteilsverhältnisse und die Fallzahl. Es zeigt sich, dass insbesondere die Klassendistanz zwischen den latenten Verlaufsgruppen sowie die Verletzungen der Messinvarianz zwischen den latenten Gruppen einen Einfluss auf die Performanz von MIGMMs hinsichtlich Klassenidentifikation, Koeffizienten-Schätzungen und der Standardfehlerschätzungen haben. Auf Grundlage dieser Ergebnisse wird empfohlen, MIGMMs ausschließlich bei großen und klaren Unterschieden der Verlaufsmuster und nur für latente Konstrukte mit bereits etablierter Zuverlässigkeit hinsichtlich Gruppendifferenzen einzusetzen. Die Ergebnisse dieser Untersuchung sollen dazu dienen, die Forschungspraxis der empirischen Sozialforschung anzuleiten und Empfehlungen zum Einsatz dieser neuen Analysewerkzeuge für längsschnittliche Untersuchungen zu geben.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By