Analysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genes

dc.contributor.authorCao, Xueqi
dc.contributor.authorHuber, Sandra
dc.contributor.authorAhari, Ata Jadid
dc.contributor.authorTraube, Franziska R.
dc.contributor.authorSeifert, Marc
dc.contributor.authorOakes, Christopher C.
dc.contributor.authorSecheyko, Polina
dc.contributor.authorVilov, Sergey
dc.contributor.authorScheller, Ines F.
dc.contributor.authorWagner, Nils
dc.contributor.authorYépez, Vicente A.
dc.contributor.authorBlombery, Piers
dc.contributor.authorHaferlach, Torsten
dc.contributor.authorHeinig, Matthias
dc.contributor.authorWachutka, Leonhard
dc.contributor.authorHutter, Stephan
dc.contributor.authorGagneur, Julien
dc.date.accessioned2025-06-11T15:48:19Z
dc.date.issued2024
dc.date.updated2025-01-26T18:06:52Z
dc.description.abstractBackground. Rare oncogenic driver events, particularly affecting the expression or splicing of driver genes, are suspected to substantially contribute to the large heterogeneity of hematologic malignancies. However, their identification remains challenging. Methods. To address this issue, we generated the largest dataset to date of matched whole genome sequencing and total RNA sequencing of hematologic malignancies from 3760 patients spanning 24 disease entities. Taking advantage of our dataset size, we focused on discovering rare regulatory aberrations. Therefore, we called expression and splicing outliers using an extension of the workflow DROP (Detection of RNA Outliers Pipeline) and AbSplice, a variant effect predictor that identifies genetic variants causing aberrant splicing. We next trained a machine learning model integrating these results to prioritize new candidate disease-specific driver genes. Results. We found a median of seven expression outlier genes, two splicing outlier genes, and two rare splice-affecting variants per sample. Each category showed significant enrichment for already well-characterized driver genes, with odds ratios exceeding three among genes called in more than five samples. On held-out data, our integrative modeling significantly outperformed modeling based solely on genomic data and revealed promising novel candidate driver genes. Remarkably, we found a truncated form of the low density lipoprotein receptor LRP1B transcript to be aberrantly overexpressed in about half of hairy cell leukemia variant (HCL-V) samples and, to a lesser extent, in closely related B-cell neoplasms. This observation, which was confirmed in an independent cohort, suggests LRP1B as a novel marker for a HCL-V subclass and a yet unreported functional role of LRP1B within these rare entities. Conclusions. Altogether, our census of expression and splicing outliers for 24 hematologic malignancy entities and the companion computational workflow constitute unique resources to deepen our understanding of rare oncogenic events in hematologic cancers.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipBundesministerium für Bildung und Forschung
dc.description.sponsorshipTechnische Universität München
dc.identifier.issn1756-994X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-165800de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16580
dc.identifier.urihttps://doi.org/10.18419/opus-16561
dc.language.isoen
dc.relation.uridoi:10.1186/s13073-024-01331-6
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660
dc.titleAnalysis of 3760 hematologic malignancies reveals rare transcriptomic aberrations of driver genesen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetChemie
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Biochemie und Technische Biochemie
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten21
ubs.publikation.sourceGenome medicine 16 (2024), No. 70
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
13073_2024_Article_1331.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: