Thermal effects on monolithic 3D ferroelectric transistors for deep neural networks performance

dc.contributor.authorKumar, Shubham
dc.contributor.authorChauhan, Yogesh Singh
dc.contributor.authorAmrouch, Hussam
dc.date.accessioned2024-10-23T15:34:09Z
dc.date.available2024-10-23T15:34:09Z
dc.date.issued2024de
dc.date.updated2024-10-15T20:45:33Z
dc.description.abstractMonolithic three‐dimensional (M3D) integration advances integrated circuits by enhancing density and energy efficiency. Ferroelectric thin‐film transistors (Fe‐TFTs) attract attention for neuromorphic computing and back‐end‐of‐the‐line (BEOL) compatibility. However, M3D faces challenges like increased runtime temperatures due to limited heat dissipation, impacting system reliability. This work demonstrates the effect of temperature impact on single‐gate (SG) Fe‐TFT reliability. SG Fe‐TFTs have limitations such as read‐disturbance and small memory windows, constraining their use. To mitigate these, dual‐gate (DG) Fe‐TFTs are modeled using technology computer‐aided design, comparing their performance. Compute‐in‐memory (CIM) architectures with SG and DG Fe‐TFTs are investigated for deep neural networks (DNN) accelerators, revealing heat's detrimental effect on reliability and inference accuracy. DG Fe‐TFTs exhibit about 4.6x higher throughput than SG Fe‐TFTs. Additionally, thermal effects within the simulated M3D architecture are analyzed, noting reduced DNN accuracy to 81.11% and 67.85% for SG and DG Fe‐TFTs, respectively. Furthermore, various cooling methods and their impact on CIM system temperature are demonstrated, offering insights for efficient thermal management strategies.en
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn2640-4567
dc.identifier.issn2640-4567
dc.identifier.other1907101535
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-151428de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15142
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15123
dc.language.isoende
dc.relation.uridoi:10.1002/aisy.202400019de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleThermal effects on monolithic 3D ferroelectric transistors for deep neural networks performanceen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Informatikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten9de
ubs.publikation.sourceAdvanced intelligent systems 6 (2024), No. 2400019de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
AISY_AISY202400019.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: