Hybrid modeling of lithium-ion battery : physics-informed neural network for battery state estimation

dc.contributor.authorSingh, Soumya
dc.contributor.authorEbongue, Yvonne Eboumbou
dc.contributor.authorRezaei, Shahed
dc.contributor.authorBirke, Kai Peter
dc.date.accessioned2023-06-22T09:21:43Z
dc.date.available2023-06-22T09:21:43Z
dc.date.issued2023de
dc.date.updated2023-06-07T09:24:26Z
dc.description.abstractAccurate forecasting of the lifetime and degradation mechanisms of lithium-ion batteries is crucial for their optimization, management, and safety while preventing latent failures. However, the typical state estimations are challenging due to complex and dynamic cell parameters and wide variations in usage conditions. Physics-based models need a tradeoff between accuracy and complexity due to vast parameter requirements, while machine-learning models require large training datasets and may fail when generalized to unseen scenarios. To address this issue, this paper aims to integrate the physics-based battery model and the machine learning model to leverage their respective strengths. This is achieved by applying the deep learning framework called physics-informed neural networks (PINN) to electrochemical battery modeling. The state of charge and state of health of lithium-ion cells are predicted by integrating the partial differential equation of Fick’s law of diffusion from a single particle model into the neural network training process. The results indicate that PINN can estimate the state of charge with a root mean square error in the range of 0.014% to 0.2%, while the state of health has a range of 1.1% to 2.3%, even with limited training data. Compared to conventional approaches, PINN is less complex while still incorporating the laws of physics into the training process, resulting in adequate predictions, even for unseen situations.en
dc.description.sponsorshipGerman Federal Ministry for Economic Affairs and Climate Action (BMWK)de
dc.identifier.issn2313-0105
dc.identifier.other1851473769
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132074de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13207
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13188
dc.language.isoende
dc.relation.uridoi:10.3390/batteries9060301de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.titleHybrid modeling of lithium-ion battery : physics-informed neural network for battery state estimationen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Photovoltaikde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten19de
ubs.publikation.sourceBatteries 9 (2023), No. 301de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
batteries-09-00301-v2.pdf
Size:
5.35 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: