MS-RAFT+ : high resolution multi-scale RAFT

dc.contributor.authorJahedi, Azin
dc.contributor.authorLuz, Maximilian
dc.contributor.authorRivinius, Marc
dc.contributor.authorMehl, Lukas
dc.contributor.authorBruhn, Andrés
dc.date.accessioned2025-01-17T10:04:04Z
dc.date.available2025-01-17T10:04:04Z
dc.date.issued2023de
dc.date.updated2024-11-02T08:56:33Z
dc.description.abstractHierarchical concepts have proven useful in many classical and learning-based optical flow methods regarding both accuracy and robustness. In this paper we show that such concepts are still useful in the context of recent neural networks that follow RAFT’s paradigm refraining from hierarchical strategies by relying on recurrent updates based on a single-scale all-pairs transform. To this end, we introduce MS-RAFT+: a novel recurrent multi-scale architecture based on RAFT that unifies several successful hierarchical concepts. It employs a coarse-to-fine estimation to enable the use of finer resolutions by useful initializations from coarser scales. Moreover, it relies on RAFT’s correlation pyramid that allows to consider non-local cost information during the matching process. Furthermore, it makes use of advanced multi-scale features that incorporate high-level information from coarser scales. And finally, our method is trained subject to a sample-wise robust multi-scale multi-iteration loss that closely supervises each iteration on each scale, while allowing to discard particularly difficult samples. In combination with an appropriate mixed-dataset training strategy, our method performs favorably. It not only yields highly accurate results on the four major benchmarks (KITTI 2015, MPI Sintel, Middlebury and VIPER), it also allows to achieve these results with a single model and a single parameter setting. Our trained model and code are available at https://github.com/cv-stuttgart/MS_RAFT_plus .en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1573-1405
dc.identifier.issn0920-5691
dc.identifier.other1920036725
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-155420de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15542
dc.identifier.urihttps://doi.org/10.18419/opus-15523
dc.language.isoende
dc.relation.uridoi:10.1007/s11263-023-01930-7de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleMS-RAFT+ : high resolution multi-scale RAFTen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Informationssicherheitde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1835-1856de
ubs.publikation.sourceInternational journal of computer vision 132 (2024), S. 1835-1856de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11263-023-01930-7.pdf
Size:
4.27 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: