On data-based estimation of possibility distributions

dc.contributor.authorHose, Dominik
dc.contributor.authorHanss, Michael
dc.date.accessioned2019-11-21T16:07:40Z
dc.date.available2019-11-21T16:07:40Z
dc.date.issued2019de
dc.description.abstractIn this paper, we show how a possibilistic description of uncertainty arises very naturally in statistical data analysis. In combination with recent results in inverse uncertainty propagation and the consistent aggregation of marginal possibility distributions, this estimation procedure enables a very general approach to possibilistic identification problems in the framework of imprecise probabilities, i.e. the non-parametric estimation of possibility distributions of uncertain variables from data with a clear interpretation.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-106448de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10644
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10627
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc510de
dc.subject.ddc620de
dc.titleOn data-based estimation of possibility distributionsen
dc.typepreprintde
ubs.bemerkung.externPreprint submitted to Fuzzy Sets and Systems on October 14, 2019.de
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.publikation.noppnyesde
ubs.publikation.seiten16de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
HoseHanss2019b_OPUS.pdf
Size:
912.98 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: