Improving the MPI-IO performance of applications with genetic algorithm based auto-tuning

dc.contributor.authorBagbaba, Ayse
dc.contributor.authorWang, Xuan
dc.date.accessioned2021-11-02T09:28:35Z
dc.date.available2021-11-02T09:28:35Z
dc.date.issued2021de
dc.description.abstractParallel I/O is an essential part of scientific applications running on high-performance computing systems. Under- standing an application’s parallel I/O behavior and identifying sources of performance bottlenecks require a multi-layer view of the I/O. Typical parallel I/O stack layers offer many tunable parameters that can achieve the best possible I/O performance. However, scientific users do often not have the time nor the experience for investigating the proper combination of these parameters for each application use-case. Auto-tuning can help users by automatically tuning I/O parameters at various layers transparently. In auto-tuning, using naive strategy, running an application by trying all possible combinations of tunable parameters for all layers of the I/O stack to find the best settings is an exhaustive search through the huge parameter space. This strategy is infeasible because of the long execution times of trial runs. In this paper, we propose a genetic algorithm-based parallel I/O auto-tuning approach that can hide the complexity of the I/O stack from users and auto-tune a set of parameter values for an application on a given system to improve the I/O performance. In particular, our approach tests a set of parameters and then, modifies the combination of these parameters for further testing based on the I/O performance. We have validated our model using two I/O benchmarks, namely IOR and MPI-Tile-IO. We achieved an increase in I/O bandwidth of up to 7.74×over the default parameters for IOR and 5.59× over the default parameters for MPI-Tile-IO.en
dc.identifier.isbn978-1-6654-3577-2
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-117829de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11782
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11765
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/824080de
dc.relation.uridoi:10.1109/IPDPSW52791.2021.00118de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleImproving the MPI-IO performance of applications with genetic algorithm based auto-tuningen
dc.typeconferenceObjectde
ubs.bemerkung.extern© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.de
ubs.fakultaetZentrale Einrichtungende
ubs.institutHöchstleistungsrechenzentrum Stuttgart (HLRS)de
ubs.konferenznameIEEE International Parallel and Distributed Processing Symposium (35th, 2021, Online)de
ubs.publikation.noppnyesde
ubs.publikation.source2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) : IPDPSW 2021. Piscataway, NJ : IEEE, 2021. - ISBN 978-1-6654-3577-2, S. 798-805de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Bagbaba_iWAPT2021.pdf
Size:
279.56 KB
Format:
Adobe Portable Document Format
Description:
MPIIO auto-tuning; Bagaba iWAPT 2021

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: