Composition‐dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly‐efficient and stable anode catalyst in anion exchange membrane water electrolysis

dc.contributor.authorJiang, Wulyu
dc.contributor.authorFaid, Alaa Y.
dc.contributor.authorGomes, Bruna Ferreira
dc.contributor.authorGalkina, Irina
dc.contributor.authorXia, Lu
dc.contributor.authorLobo, Carlos Manuel Silva
dc.contributor.authorDesmau, Morgane
dc.contributor.authorBorowski, Patrick
dc.contributor.authorHartmann, Heinrich
dc.contributor.authorMaljusch, Artjom
dc.contributor.authorBesmehn, Astrid
dc.contributor.authorRoth, Christina
dc.contributor.authorSunde, Svein
dc.contributor.authorLehnert, Werner
dc.contributor.authorShviro, Meital
dc.date.accessioned2024-08-09T09:05:18Z
dc.date.available2024-08-09T09:05:18Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:09:26Z
dc.description.abstractWater splitting is an environmentally friendly strategy to produce hydrogen but is limited by the oxygen evolution reaction (OER). Therefore, there is an urgent need to develop highly efficient electrocatalysts. Here, NiFe layered double hydroxides (NiFe LDH) with tunable Ni/Fe composition exhibit corresponding dependent morphology, layered structure, and chemical states, leading to higher activity and better stability than that of conventional NiFe LDH‐based catalysts. The characterization data show that the low overpotentials (249 mV at 10 mA cm-2), ultrasmall Tafel slopes (24 mV dec-1), and high current densities of Ni3Fe LDH result from the larger fraction of trivalent Fe3+ and the optimized local chemical environment with more oxygen coordination and ordered atomic structure for the metal site. Owing to the active intermediate species, Ni(Fe)OOH, under OER conditions and a reversible dynamic phase transition during the cycling process, the Ni3Fe LDH achieves a high current density of over 2 A cm-2 at 2.0 V, and durability of 400 h at 1 A cm-2 in a single cell test. This work provides insights into the relationship between the composition, electronic structure of the layer, and electrocatalytic performance, and offers a scalable and efficient strategy for developing promising catalysts to support the development of the future hydrogen economy.en
dc.description.sponsorshipHydrogen Europe and Hydrogen Europe Researchde
dc.description.sponsorshipEuropean Union's Horizon 2020 research innovation programmede
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn1616-3028
dc.identifier.issn1616-301X
dc.identifier.other1898381402
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-148130de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14813
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14794
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/875088de
dc.relation.uridoi:10.1002/adfm.202203520de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleComposition‐dependent morphology, structure, and catalytical performance of nickel-iron layered double hydroxide as highly‐efficient and stable anode catalyst in anion exchange membrane water electrolysisen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Chemiede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceAdvanced functional materials 32 (2022), No. 2203520de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADFM_ADFM202203520.pdf
Size:
7.59 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: