Implementing density functional theory (DFT) methods on many-core GPGPU accelerators

dc.contributor.authorGosswami, Bishwajit Mohande
dc.date.accessioned2012-05-14de
dc.date.accessioned2016-03-31T07:59:33Z
dc.date.available2012-05-14de
dc.date.available2016-03-31T07:59:33Z
dc.date.issued2011de
dc.description.abstractDensity Functional Theory (DFT) is one of the most widely used quantum mechanical methods for calculations of the electronic structure of molecules and surfaces, which achieves an excellent balance of accuracy and computational cost. However, for large molecular systems with few hundred atoms, the computational costs are become very high. Therefore, there is a fast growing demand for much more efficient implementations to utilize DFT for macro molecules. General Purpose Graphics Processors (GPUs) are highly parallel, multi-threaded, many-core processors with tremendous computational capability, which out-paces CPUs in terms of floating-point performance. They are particularly focused for computation intensive and highly data-parallel computations. This thesis will introduce the scope of fine grained parallelism with highly data-parallel GPU implementations of several algorithmic parts of DFT. Furthermore, experimental results and benchmarks will be presented in comparison with a current state of art DFT implementation (Molpro).en
dc.identifier.other369501381de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-73943de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/2853
dc.identifier.urihttp://dx.doi.org/10.18419/opus-2836
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleImplementing density functional theory (DFT) methods on many-core GPGPU acceleratorsen
dc.typemasterThesisde
ubs.fakultaetFakultät Informatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Technische Informatikde
ubs.opusid7394de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
MSTR_3221.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
935 B
Format:
Plain Text
Description: