Exploring the full potential of photocatalytic carbon dioxide reduction using a dinuclear Re2Cl2 complex assisted by various photosensitizers
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Photosensitizing units have already been applied to enable light‐driven catalytic reduction of CO2 with mononuclear rhenium complexes. However, dinuclear catalytic systems that are able to activate CO2 in a cooperative bimetallic fashion have only rarely been combined with photosensitizers. We here present detailed studies on the influence of additional photosensitizers on the catalytic performance of a dirhenium complex (Re2Cl2) and present correlations with spectroscopic measurements, which shed light on the reaction mechanism. The use of [Ir(dFppy)3] (Ir, dFppy=2‐(4,6‐difluorophenyl)pyridine)) resulted in considerably faster CO2 to CO transformation than [Cu(xant)(bcp)]PF6 (Cu, xant=xantphos, bcp=bathocuproine). Emission quenching studies, transient absorption as well as IR spectroscopy provide information about the electron transfer paths of the intermolecular systems. It turned out that formation of double reduced species [Re2Cl2]2- along with an intermediate with a Re-Re bond ([ReRe]) can be taken as an indication of multi‐electron storage capacity. Furthermore, under catalytic conditions a CO2‐bridged intermediate was identified.