Deep learning based soft sensors for industrial machinery

dc.contributorAVAT Automation GmbHde
dc.contributor.authorMaschler, Benjamin
dc.contributor.authorGanssloser, Sören
dc.contributor.authorHablizel, Andreas
dc.contributor.authorWeyrich, Michael
dc.date.accessioned2020-06-08T09:57:56Z
dc.date.available2020-06-08T09:57:56Z
dc.date.issued2020de
dc.description.abstractA multitude of high quality, high-resolution data is a cornerstone of the digital services associated with Industry 4.0. However, a great fraction of industrial machinery in use today features only a bare minimum of sensors and retrofitting new ones is expensive if possible at all. Instead, already existing sensors’ data streams could be utilized to virtually ‘measure’ new parameters. In this paper, a deep learning based virtual sensor for estimating a combustion parameter on a large gas engine using only the rotational speed as input is developed and evaluated. The evaluation focusses on the influence of data preprocessing compared to network type and structure regarding the estimation quality.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109004de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10900
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10883
dc.language.isoende
dc.relation.uridoi:10.13140/RG.2.2.24401.56167/1de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc600de
dc.subject.ddc620de
dc.subject.ddc621.3de
dc.subject.ddc670de
dc.titleDeep learning based soft sensors for industrial machineryen
dc.typepreprintde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Automatisierungstechnik und Softwaresystemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.noppnyesde
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Deep Learning Based Soft Sensors for Industrial Machinery.pdf
Size:
359.59 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: