Correntropy-based constructive one hidden layer neural network

dc.contributor.authorNayyeri, Mojtaba
dc.contributor.authorRouhani, Modjtaba
dc.contributor.authorYazdi, Hadi Sadoghi
dc.contributor.authorMäkelä, Marko M.
dc.contributor.authorMaskooki, Alaleh
dc.contributor.authorNikulin, Yury
dc.date.accessioned2024-05-10T10:22:55Z
dc.date.available2024-05-10T10:22:55Z
dc.date.issued2024de
dc.date.updated2024-04-25T13:24:34Z
dc.description.abstractOne of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntropy objective function (correntropy-based constructive neural network (C2N2)), which is robust to non-Gaussian noises. In the proposed learning method, input and output side optimizations are separated. It is proved theoretically that the new hidden node, which is obtained from the input side optimization problem, is not orthogonal to the residual error function. Regarding this fact, it is proved that the correntropy of the residual error converges to its optimum value. During the training process, the weighted linear least square problem is iteratively applied to update the parameters of the newly added node. Experiments on both synthetic and benchmark datasets demonstrate the robustness of the proposed method in comparison with the MSE-based constructive network, the radial basis function (RBF) network. Moreover, the proposed method outperforms other robust learning methods including the cascade correntropy network (CCOEN), Multi-Layer Perceptron based on the Minimum Error Entropy objective function (MLPMEE), Multi-Layer Perceptron based on the correntropy objective function (MLPMCC) and the Robust Least Square Support Vector Machine (RLS-SVM).en
dc.identifier.issn1999-4893
dc.identifier.other1888537450
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143685de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14368
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14349
dc.language.isoende
dc.relation.uridoi:10.3390/a17010049de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleCorrentropy-based constructive one hidden layer neural networken
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Künstliche Intelligenzde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten36de
ubs.publikation.sourceAlgorithms 17 (2024), No. 49de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
algorithms-17-00049-v3.pdf
Size:
4.11 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: