Mouse2Vec: learning reusable semantic representations of mouse behaviour

dc.contributor.authorZhang, Guanhua
dc.contributor.authorHu, Zhiming
dc.contributor.authorBâce, Mihai
dc.contributor.authorBulling, Andreas
dc.date.accessioned2024-12-04T15:18:11Z
dc.date.available2024-12-04T15:18:11Z
dc.date.issued2024de
dc.description.abstractThe mouse is a pervasive input device used for a wide range of interactive applications. However, computational modelling of mouse behaviour typically requires time-consuming design and extraction of handcrafted features, or approaches that are application-specific. We instead propose Mouse2Vec - a novel self-supervised method designed to learn semantic representations of mouse behaviour that are reusable across users and applications. Mouse2Vec uses a Transformer-based encoder-decoder architecture, which is specifically geared for mouse data: During pretraining, the encoder learns an embedding of input mouse trajectories while the decoder reconstructs the input and simultaneously detects mouse click events. We show that the representations learned by our method can identify interpretable mouse behaviour clusters and retrieve similar mouse trajectories. We also demonstrate on three sample downstream tasks that the representations can be practically used to augment mouse data for training supervised methods and serve as an effective feature extractor.en
dc.identifier.isbn979-8-4007-0330-0
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-153951de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15395
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15376
dc.language.isoende
dc.relation.uridoi:10.1145/3613904.3642141de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleMouse2Vec: learning reusable semantic representations of mouse behaviouren
dc.typeconferenceObjectde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.konferenznameCHI Conference on Human Factors in Computing Systems (2024, Honolulu)de
ubs.publikation.noppnyesde
ubs.publikation.sourceCHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. New York, NY : ACM, 2024. - ISBN 979-8-4007-0330-0, article 621de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Mouse2Vec_authorversion.pdf
Size:
1.27 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: