Hydroxyl-conductive 2D hexagonal boron nitrides for anion exchange membrane water electrolysis and sustainable hydrogen production

dc.contributor.authorKaur, Jasneet
dc.contributor.authorSchweinbenz, Matthew
dc.contributor.authorHo, Kane
dc.contributor.authorMalekkhouyan, Adel
dc.contributor.authorGhotia, Kamal
dc.contributor.authorEgert, Franz
dc.contributor.authorRazmjooei, Fatemeh
dc.contributor.authorAnsar, Syed Asif
dc.contributor.authorZarrin, Hadis
dc.date.accessioned2025-04-16T11:37:09Z
dc.date.issued2025
dc.date.updated2025-03-13T14:30:55Z
dc.description.abstractIn response to the urgent global call to transition from polluting fossil fuels to sustainable energy alternatives, hydrogen emerges as a promising and widely accessible energy source if it can be efficiently produced through water splitting and electrolysis. Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have potential for large scale H2 production at a low cost. However, the development of alkaline membranes with high hydroxide conductivity, improved stability and better performance is a significant challenge for the commercial application of advanced AEMWEs. In this work, a novel structure for hydroxide-ion conductive membranes based on surface-engineered two-dimensional (2D) hexagonal boron nitrides (h-BN) is designed and validated in a highly active and durable AEMWE cell with non-precious metal Ni-based electrodes. Among two samples, the high-loaded 2D hBN nanocomposite membrane (M2) showed significantly high hydroxide-ion conductivity (190 mS cm-1) with improved electrochemical and mechanical stability. The AEMWE cell assembled with the M2 membrane exhibited superior cell performance, achieving 1.78 V at 0.5 A cm-2 compared to the cell utilizing the lower loading hBN nanocomposite membrane (M1). Additionally, its performance closely approached that of the cell employing a commercial membrane. During a long-term stability test conducted at a constant load of 0.5 A cm-2 for 250 hours, the M2 membrane maintained satisfactory electrolysis voltage without any notable failure. These findings demonstrate that 2D hBN nanocomposite membranes hold great promise for use in advanced AEMWEs.en
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant
dc.description.sponsorshipDepartment of Chemical Engineering and Faculty of Engineering and Architectural Science and the Natural Science and Engineering at Toronto Metropolitan University
dc.description.sponsorshipMitacs Elevate Postdoctoral Fellowship
dc.description.sponsorshipNSERC Discovery Grant
dc.identifier.issn2398-4902
dc.identifier.other1926639642
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-157920de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/15792
dc.identifier.urihttps://doi.org/10.18419/opus-15773
dc.language.isoen
dc.relation.uridoi:10.1039/d4se01671h
dc.rightsCC BY-NC
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.uri
dc.subject.ddc333.7
dc.titleHydroxyl-conductive 2D hexagonal boron nitrides for anion exchange membrane water electrolysis and sustainable hydrogen productionen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsie
ubs.fakultaetExterne wissenschaftliche Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutFakultät Luft- und Raumfahrttechnik und Geodäsie (Institutsübergreifend)
ubs.institutDeutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten1196-1206
ubs.publikation.sourceSustainable energy & fuels 9 (2025), S. 1196-1206
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
D4SE01671H.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: