Are you sure? : prediction revision in automated decision‐making

dc.contributor.authorBurkart, Nadia
dc.contributor.authorRobert, Sebastian
dc.contributor.authorHuber, Marco F.
dc.date.accessioned2024-04-26T14:35:40Z
dc.date.available2024-04-26T14:35:40Z
dc.date.issued2020de
dc.date.updated2023-11-14T06:17:09Z
dc.description.abstractWith the rapid improvements in machine learning and deep learning, decisions made by automated decision support systems (DSS) will increase. Besides the accuracy of predictions, their explainability becomes more important. The algorithms can construct complex mathematical prediction models. This causes insecurity to the predictions. The insecurity rises the need for equipping the algorithms with explanations. To examine how users trust automated DSS, an experiment was conducted. Our research aim is to examine how participants supported by an DSS revise their initial prediction by four varying approaches (treatments) in a between‐subject design study. The four treatments differ in the degree of explainability to understand the predictions of the system. First we used an interpretable regression model, second a Random Forest (considered to be a black box [BB]), third the BB with a local explanation and last the BB with a global explanation. We noticed that all participants improved their predictions after receiving an advice whether it was a complete BB or an BB with an explanation. The major finding was that interpretable models were not incorporated more in the decision process than BB models or BB models with explanations.en
dc.identifier.issn1468-0394
dc.identifier.issn0266-4720
dc.identifier.other1887452621
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143133de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14313
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14294
dc.language.isoende
dc.relation.uridoi:10.1111/exsy.12577de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/de
dc.subject.ddc004de
dc.subject.ddc150de
dc.titleAre you sure? : prediction revision in automated decision‐makingen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Industrielle Fertigung und Fabrikbetriebde
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten19de
ubs.publikation.sourceExpert systems 38 (2021), No. e12577de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
EXSY_EXSY12577.pdf
Size:
5.09 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: