Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems

dc.contributor.authorGrunert, Dennis
dc.contributor.authorFehr, Jörg
dc.contributor.authorHaasdonk, Bernard
dc.date.accessioned2019-03-19T15:56:22Z
dc.date.available2019-03-19T15:56:22Z
dc.date.issued2019de
dc.description.abstractModel Order Reduction is used to vastly speed up simulations but it also introduces an error to the simulation results, which needs to be controlled. The performance of the general to use, a-posteriori error estimator of Ruiner et al. for second-order systems is analyzed and a bottleneck is found in the offline stage making it unusable for larger models. We use the spectral theorem, power series expansions, monotonicity properties, and self-tailored algorithms to speed up the offline stage largely by one polynomial order both in terms of computation time as well as storage complexity. All properties are proven rigorously. This eliminates the aforementioned bottleneck. Hence, the error estimator of Ruiner et al. can finally be used for large, linear, second-order mechanical systems reduced by any model reduction method based on Petrov-Galerkin reduction. The examples show speedups of up to 28.000 and the ability to compute much larger systems with a fixed amount of memory.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-103207de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10320
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10303
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc510de
dc.subject.ddc620de
dc.titleWell-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systemsen
dc.typepreprintde
ubs.bemerkung.externSubmitted to the International Journal for Numerical Methods in Engineering.de
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.institutInstitut für Angewandte Analysis und numerische Simulationde
ubs.publikation.noppnyesde
ubs.publikation.seiten38de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
GrunertEtAl.pdf
Size:
1.22 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: