Identification of grid impedance by broadband signals in power systems with high harmonics
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Grid impedance is an important parameter and is used to perform impedance-based stability analysis for the operation of grid-connected systems, such as power electronics-interfaced solar, wind and other distributed power generation systems. The identification of grid impedance with the help of broadband signals is a popular method, but its robustness depends strongly on the harmonic disturbances caused by non-linear loads or power electronics. This paper provides an in-depth analysis of how harmonics affect the identification of grid impedance while using broadband measurements. Furthermore, a compensation method is proposed to remove the disturbing influences of harmonics on broadband impedance identification. This method is based on exploiting the properties of the used maximum-length binary sequence (MLBS). To explain the methodology of the proposed method, the design basis for the excitation signal is discussed in detail. The analysis from simulations and a real measurement in an industrial power grid shows the effectiveness of the proposed method in compensating the disturbing influences of harmonics on broadband impedance measurements.