Experimental evaluation of heat transfer effect on turbocompressor performance operating with helium-neon gas mixtures

dc.contributor.authorPodeur, Maxime
dc.contributor.authorVogt, Damian M.
dc.date.accessioned2025-04-24T14:51:21Z
dc.date.issued2022
dc.date.updated2024-11-26T08:17:29Z
dc.description.abstractWithin the framework of the Future Circular Collider (FCC) currently being investigated at CERN, the entire cryogenic cycle had to be revised with respect to the existing Large Hadron Collider (LHC). In particular, a novel pre-cooling cycle had to be developed for this purpose. This led to a closed-loop cryogenic cycle operating with a mixture of helium and neon, also called Nelium. To better understand the challenges and opportunities associated with the design and operation of radial compressors with such light gases, a closed loop test facility has been designed, built and commissioned at the ITSM (University of Stuttgart). The test facility has been developed to operate with air as well as with helium-neon gas mixtures of varying mixing ratios ranging from pure neon to pure helium. In this paper, the test facility architecture and operation procedure are briefly introduced together with a description of the newly installed compressor stage. Experimental performance measurements are then compared to adiabatic and diabatic numerical simulation validating respectively the pressure rise and diabatic stage efficiency for various gases. The heat transfer effect on compressor stage performance is then described and the respective contribution of the influencing factors are quantified.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipH2020 Marie Skłodowska-Curie Action
dc.description.sponsorshipMAN Energy Solutions Zurich AG
dc.identifier.issn2195-7045
dc.identifier.other1926870018
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-162830de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16283
dc.identifier.urihttps://doi.org/10.18419/opus-16264
dc.language.isoen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/764879
dc.relation.uridoi:10.1140/epjti/s40485-022-00082-1
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620
dc.subject.ddc660
dc.titleExperimental evaluation of heat transfer effect on turbocompressor performance operating with helium-neon gas mixturesen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetEnergie-, Verfahrens- und Biotechnik
ubs.institutInstitut für Thermische Strömungsmaschinen und Maschinenlaboratorium
ubs.publikation.seiten16
ubs.publikation.sourceEPJ techniques and instrumentation 9 (2022), No. 6
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s40485-022-00082-1.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: