Equation satisfiability in solvable groups

Abstract

The study of the complexity of the equation satisfiability problem in finite groups had been initiated by Goldmann and Russell in (Inf. Comput. 178 (1), 253-262, 10 ) where they showed that this problem is in P for nilpotent groups while it is NP -complete for non-solvable groups. Since then, several results have appeared showing that the problem can be solved in polynomial time in certain solvable groups G having a nilpotent normal subgroup H with nilpotent factor G / H . This paper shows that such a normal subgroup must exist in each finite group with equation satisfiability solvable in polynomial time, unless the Exponential Time Hypothesis fails.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess