Identifying monomeric Fe species for efficient direct methane oxidation to C1 oxygenates with H2O2 over Fe/MOR catalysts

dc.contributor.authorXu, Caiyun
dc.contributor.authorSong, Qian
dc.contributor.authorMerdanoglu, Nagme
dc.contributor.authorLiu, Hang
dc.contributor.authorKlemm, Elias
dc.date.accessioned2024-03-28T13:53:33Z
dc.date.available2024-03-28T13:53:33Z
dc.date.issued2022de
dc.date.updated2023-11-14T01:29:11Z
dc.description.abstractExploring advanced catalysts and reaction systems operated at mild reaction conditions is crucial for conducting the direct methane oxidation reaction toward oxygenate products. Many efforts have been put into research on pentasil-type (MFI) zeolites based on mononuclear and/or binuclear iron sites, using H2O2 as the oxidant. In this work, we present a modified liquid ion-exchange method to better control Fe loading in a mordenite-type (MOR) zeolite with a Si/Al molar ratio of 9. The optimized Fe/MOR catalyst showed excellent performance in the direct methane oxidation reaction with turnover frequencies (TOFs) of 555 h-1 to C1 oxygenates, significantly better than the reported activity. Multiple comparative experiments were conducted to reveal the mechanism behind the performance. Strikingly, the active sites in the Fe/MOR catalyst were found to be mononuclear iron sites, confirmed by transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray absorption spectroscopy (XAS). Increasing the iron loading led to the aggregation of the iron sites, which tend to trigger undesirable side reactions (i.e., H2O2 decomposition and over-oxidation), resulting in a significant decrease in TOFs to C1 oxygenates.en
dc.description.sponsorshipChina Scholarship Councilde
dc.identifier.issn2674-0389
dc.identifier.other1885225946
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141683de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14168
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14149
dc.language.isoende
dc.relation.uridoi:10.3390/methane1020010de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titleIdentifying monomeric Fe species for efficient direct methane oxidation to C1 oxygenates with H2O2 over Fe/MOR catalystsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.institutInstitut für Technische Chemiede
ubs.publikation.seiten107-124de
ubs.publikation.sourceMethane 1 (2022), S. 107-124de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
methane-01-00010-v3.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: