Probing self-diffusion of guest molecules in a covalent organic framework : simulation and experiment

dc.contributor.authorGrunenberg, Lars
dc.contributor.authorKeßler, Christopher
dc.contributor.authorTeh, Tiong Wei
dc.contributor.authorSchuldt, Robin
dc.contributor.authorHeck, Fabian
dc.contributor.authorKästner, Johannes
dc.contributor.authorGroß, Joachim
dc.contributor.authorHansen, Niels
dc.contributor.authorLotsch, Bettina V.
dc.date.accessioned2024-07-05T11:51:42Z
dc.date.available2024-07-05T11:51:42Z
dc.date.issued2024de
dc.date.updated2024-06-27T03:02:58Z
dc.description.abstractCovalent organic frameworks (COFs) are a class of porous materials whose sorption properties have so far been studied primarily by physisorption. Quantifying the self-diffusion of guest molecules inside their nanometer-sized pores allows for a better understanding of confinement effects or transport limitations and is thus essential for various applications ranging from molecular separation to catalysis. Using a combination of pulsed field gradient nuclear magnetic resonance measurements and molecular dynamics simulations, we have studied the self-diffusion of acetonitrile and chloroform in the 1D pore channels of two imine-linked COFs (PI-3-COF) with different levels of crystallinity and porosity. The higher crystallinity and porosity sample exhibited anisotropic diffusion for MeCN parallel to the pore direction, with a diffusion coefficient of Dpar = 6.1(3) × 10-10 m2 s-1 at 300 K, indicating 1D transport and a 7.4-fold reduction in self-diffusion compared to the bulk liquid. This finding aligns with molecular dynamics simulations predicting 5.4-fold reduction, assuming an offset-stacked COF layer arrangement. In the low-porosity sample, more frequent diffusion barriers result in isotropic, yet significantly reduced diffusivities (DB = 1.4(1) × 10-11 m2 s-1). Diffusion coefficients for chloroform at 300 K in the pores of the high- (Dpar = 1.1(2) × 10-10 m2 s-1) and low-porosity (DB = 4.5(1) × 10-12 m2 s-1) samples reproduce these trends. Our multimodal study thus highlights the significant influence of real structure effects such as stacking faults and grain boundaries on the long-range diffusivity of molecular guest species while suggesting efficient intracrystalline transport at short diffusion times.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipMax-Planck-Gesellschaftde
dc.description.sponsorshipStuttgart Center for Simulation Sciencede
dc.identifier.issn1936-086X
dc.identifier.issn1936-0851
dc.identifier.other1894719174
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146096de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14609
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14590
dc.language.isoende
dc.relation.uridoi:10.1021/acsnano.3c12167de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleProbing self-diffusion of guest molecules in a covalent organic framework : simulation and experimenten
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Theoretische Chemiede
ubs.institutInstitut für Technische Thermodynamik und Thermische Verfahrenstechnikde
ubs.institutMax-Planck-Institut für Festkörperforschungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten16091-16100de
ubs.publikation.sourceACS nano 18 (2024), S. 16091-16100de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
nn3c12167.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: