Surrogate modeling and aeroelastic analysis of a wind turbine with down-regulation, power boosting, and IBC capabilities

dc.contributor.authorPettas, Vasilis
dc.contributor.authorCheng, Po Wen
dc.date.accessioned2024-06-12T07:18:26Z
dc.date.available2024-06-12T07:18:26Z
dc.date.issued2024de
dc.date.updated2024-04-25T13:22:56Z
dc.description.abstractAs the maturity and complexity of wind energy systems increase, the operation of wind turbines in wind farms needs to be adjustable in order to provide flexibility to the grid operators and optimize operations through wind farm control. An important aspect of this is monitoring and managing the structural reliability of the wind turbines in terms of fatigue loading. Additionally, in order to perform optimization, uncertainty analyses, condition monitoring, and other tasks, fast and accurate models of the turbine response are required. To address these challenges, we present the controller tuning and surrogate modeling for a wind turbine that is able to vary its power level in both down-regulation and power-boosting modes, as well as reducing loads with an individual blade control loop. Two methods to derive the setpoints for down-regulation are discussed and implemented. The response of the turbine, in terms of loads, power, and other metrics, for relevant operating conditions and for all control modes is captured by a data-driven surrogate model based on aeroelastic simulations following two regression approaches: a spline-based interpolation and a Gaussian process regression model. The uncertainty of the surrogate models is quantified, showing a good agreement with the simulation with a mean absolute error lower than 4% for all quantities considered. Based on the surrogate model, the aeroelastic response of the entire wind turbine for the different control modes and their combination is analyzed to shed light on the implications of the control strategies on the fatigue loading of the various components.en
dc.description.sponsorshipStiftung Energieforschung Baden-Württembergde
dc.identifier.issn1996-1073
dc.identifier.other1891280910
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145147de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14514
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14495
dc.language.isoende
dc.relation.uridoi:10.3390/en17061284de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleSurrogate modeling and aeroelastic analysis of a wind turbine with down-regulation, power boosting, and IBC capabilitiesen
dc.typearticlede
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.institutInstitut für Flugzeugbaude
ubs.publikation.seiten32de
ubs.publikation.sourceEnergies 17 (2024), No. 1284de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
energies-17-01284.pdf
Size:
5.22 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: