Learning user embeddings from human gaze for personalised saliency prediction

dc.contributor.authorStrohm, Florian
dc.contributor.authorBâce, Mihai
dc.contributor.authorBulling, Andreas
dc.date.accessioned2024-07-15T08:21:20Z
dc.date.available2024-07-15T08:21:20Z
dc.date.issued2024de
dc.description.abstractReusable embeddings of user behaviour have shown significant performance improvements for the personalised saliency prediction task. However, prior works require explicit user characteristics and preferences as input, which are often difficult to obtain. We present a novel method to extract user embeddings from pairs of natural images and corresponding saliency maps generated from a small amount of user-specific eye tracking data. At the core of our method is a Siamese convolutional neural encoder that learns the user embeddings by contrasting the image and personal saliency map pairs of different users. Evaluations on two public saliency datasets show that the generated embeddings have high discriminative power, are effective at refining universal saliency maps to the individual users, and generalise well across users and images. Finally, based on our model's ability to encode individual user characteristics, our work points towards other applications that can benefit from reusable embeddings of gaze behaviour.en
dc.identifier.issn2573-0142
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146669de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14666
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14647
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/801708de
dc.relation.uridoi:10.1145/3655603de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleLearning user embeddings from human gaze for personalised saliency predictionen
dc.typeconferenceObjectde
ubs.bemerkung.externPreprint: https://doi.org/10.48550/arXiv.2403.13653de
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Visualisierung und Interaktive Systemede
ubs.konferenznameACM Symposium on Eye Tracking Research & Applications (2024, Glasgow)de
ubs.publikation.noppnyesde
ubs.publikation.seiten16de
ubs.publikation.sourceProceedings of the ACM on Human-Computer Interaction 8 (2024), issue ETRAde
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Learning_User_Embeddings_from_Visual_Attention_for_Personalised_Saliency_Prediction__ETRA_2024__Florian_-1.pdf
Size:
2.17 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: