Hagrid : using Hilbert and Gosper curves to gridify scatterplots

dc.contributor.authorCutura, Rene
dc.contributor.authorMorariu, Cristina
dc.contributor.authorCheng, Zhanglin
dc.contributor.authorWang, Yunhai
dc.contributor.authorWeiskopf, Daniel
dc.contributor.authorSedlmair, Michael
dc.date.accessioned2024-11-13T09:04:21Z
dc.date.available2024-11-13T09:04:21Z
dc.date.issued2022de
dc.date.updated2024-11-02T08:38:26Z
dc.description.abstractA common enhancement of scatterplots represents points as small multiples, glyphs, or thumbnail images. As this encoding often results in overlaps, a general strategy is to alter the position of the data points, for instance, to a grid-like structure. Previous approaches rely on solving expensive optimization problems or on dividing the space that alter the global structure of the scatterplot. To find a good balance between efficiency and neighborhood and layout preservation, we propose Hagrid , a technique that uses space-filling curves (SFCs) to “gridify” a scatterplot without employing expensive collision detection and handling mechanisms. Using SFCs ensures that the points are plotted close to their original position, retaining approximately the same global structure. The resulting scatterplot is mapped onto a rectangular or hexagonal grid, using Hilbert and Gosper curves. We discuss and evaluate the theoretic runtime of our approach and quantitatively compare our approach to three state-of-the-art gridifying approaches, DGrid , Small multiples with gaps SMWG , and CorrelatedMultiples CMDS , in an evaluation comprising 339 scatterplots. Here, we compute several quality measures for neighborhood preservation together with an analysis of the actual runtimes. The main results show that, compared to the best other technique, Hagrid is faster by a factor of four, while achieving similar or even better quality of the gridified layout. Due to its computational efficiency, our approach also allows novel applications of gridifying approaches in interactive settings, such as removing local overlap upon hovering over a scatterplot.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEALde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipUniversität Stuttgartde
dc.identifier.issn1875-8975
dc.identifier.issn1343-8875
dc.identifier.other1912218674
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152685de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15268
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15249
dc.language.isoende
dc.relation.uridoi:10.1007/s12650-022-00854-7de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleHagrid : using Hilbert and Gosper curves to gridify scatterplotsen
dc.typearticlede
ubs.fakultaetZentrale Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutVisualisierungsinstitut der Universität Stuttgartde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1291-1307de
ubs.publikation.sourceJournal of visualization 25 (2022), S. 1291-1307de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s12650-022-00854-7.pdf
Size:
2.85 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: