Analyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme events

dc.contributor.authorAcuña Espinoza, Eduardo
dc.contributor.authorLoritz, Ralf
dc.contributor.authorKratzert, Frederik
dc.contributor.authorKlotz, Daniel
dc.contributor.authorGauch, Martin
dc.contributor.authorÁlvarez Chaves, Manuel
dc.contributor.authorEhret, Uwe
dc.date.accessioned2025-03-19T14:12:45Z
dc.date.issued2025
dc.date.updated2025-03-13T14:29:49Z
dc.description.abstractData-driven techniques have shown the potential to outperform process-based models in rainfall–runoff simulation. Recently, hybrid models, which combine data-driven methods with process-based approaches, have been proposed to leverage the strengths of both methodologies, aiming to enhance simulation accuracy while maintaining a certain interpretability. Expanding the set of test cases to evaluate hybrid models under different conditions, we test their generalization capabilities for extreme hydrological events, comparing their performance against long short-term memory (LSTM) networks and process-based models. Our results indicate that hybrid models show performance similar to that of the LSTM network for most cases. However, hybrid models reported slightly lower errors in the most extreme cases and were able to produce higher peak discharges.en
dc.description.sponsorshipKIT Center for Mathematics in Sciences, Engineering and Economics
dc.identifier.issn1607-7938
dc.identifier.issn1027-5606
dc.identifier.other192348799X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-157650de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/15765
dc.identifier.urihttps://doi.org/10.18419/opus-15746
dc.language.isoen
dc.relation.uridoi:10.5194/hess-29-1277-2025
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550
dc.titleAnalyzing the generalization capabilities of a hybrid hydrological model for extrapolation to extreme eventsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungen
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.seiten1277-1294
ubs.publikation.sourceHydrology and earth system sciences 29 (2025), S. 1277-1294
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
hess-29-1277-2025.pdf
Size:
6.71 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: