Performance of two complementary machine-learned potentials in modelling chemically complex systems

dc.contributor.authorGubaev, Konstantin
dc.contributor.authorZaverkin, Viktor
dc.contributor.authorSrinivasan, Prashanth
dc.contributor.authorDuff, Andrew Ian
dc.contributor.authorKästner, Johannes
dc.contributor.authorGrabowski, Blazej
dc.date.accessioned2023-09-13T07:51:09Z
dc.date.available2023-09-13T07:51:09Z
dc.date.issued2023de
dc.description.abstractChemically complex multicomponent alloys possess exceptional properties derived from an inexhaustible compositional space. The complexity however makes interatomic potential development challenging. We explore two complementary machine-learned potentials - the moment tensor potential (MTP) and the Gaussian moment neural network (GM-NN) - in simultaneously describing configurational and vibrational degrees of freedom in the Ta-V-Cr-W alloy family. Both models are equally accurate with excellent performance evaluated against density-functional-theory. They achieve root-mean-square-errors (RMSEs) in energies of less than a few meV/atom across 0 K ordered and high-temperature disordered configurations included in the training. Even for compositions not in training, relative energy RMSEs at high temperatures are within a few meV/atom. High-temperature molecular dynamics forces have similarly small RMSEs of about 0.15 eV/Å for the disordered quaternary included in, and ternaries not part of training. MTPs achieve faster convergence with training size; GM-NNs are faster in execution. Active learning is partially beneficial and should be complemented with conventional human-based training set generation.en
dc.identifier.issn2057-3960
dc.identifier.other1860362834
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134984de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13498
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13479
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/865855de
dc.relation.uridoi:10.1038/s41524-023-01073-wde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titlePerformance of two complementary machine-learned potentials in modelling chemically complex systemsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutInstitut für Theoretische Chemiede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten15de
ubs.publikation.sourcenpj computational materials 9 (2023), No. 129de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41524-023-01073-w.pdf
Size:
3.66 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: