On the solution of forward and inverse problems in possibilistic uncertainty quantification for dynamical systems

dc.contributor.authorHose, Dominik
dc.contributor.authorHanss, Michael
dc.date.accessioned2020-08-03T15:24:19Z
dc.date.available2020-08-03T15:24:19Z
dc.date.issued2020de
dc.description.abstractIn this contribution, we adress an apparent lack of methods for the robust analysis of dynamical systems when neither a precise statistical nor an entirely epistemic description of the present uncertainties is possible. Relying on recent results of possibilistic calculus, we revisit standard prediction and filtering problems and show how these may be solved in a numerically exact way.en
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109583de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10958
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10941
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleOn the solution of forward and inverse problems in possibilistic uncertainty quantification for dynamical systemsen
dc.typepreprintde
ubs.bemerkung.externPreprint submitted to 9th International Workshop on Reliable Engineering Computing REC 2021 on June 3, 2020de
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.publikation.noppnyesde
ubs.publikation.seiten11de
ubs.publikation.typPreprintde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
HoseHanss_OPUS2020.pdf
Size:
355.26 KB
Format:
Adobe Portable Document Format
Description:
PDF

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: