Monitoring intracellular metabolite dynamics in Saccharomyces cerevisiae during industrially relevant famine stimuli

dc.contributor.authorMinden, Steven
dc.contributor.authorAniolek, Maria
dc.contributor.authorSarkizi Shams Hajian, Christopher
dc.contributor.authorTeleki, Attila
dc.contributor.authorZerrer, Tobias
dc.contributor.authorDelvigne, Frank
dc.contributor.authorGulik, Walter van
dc.contributor.authorDeshmukh, Amit
dc.contributor.authorNoorman, Henk
dc.contributor.authorTakors, Ralf
dc.date.accessioned2022-11-09T12:41:19Z
dc.date.available2022-11-09T12:41:19Z
dc.date.issued2022
dc.date.updated2022-04-08T13:56:05Z
dc.description.abstractCarbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 μmol·L-1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.en
dc.identifier.issn2218-1989
dc.identifier.other1823509452
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-125348de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12534
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12515
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/722361de
dc.relation.uridoi:10.3390/metabo12030263de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleMonitoring intracellular metabolite dynamics in Saccharomyces cerevisiae during industrially relevant famine stimulien
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten24de
ubs.publikation.sourceMetabolites 12 (2022), No. 263de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
metabolites-12-00263-v2.pdf
Size:
2.47 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: