Framework for holistic online optimization of milling machine conditions to enhance machine efficiency and sustainability

dc.contributor.authorBott, Alexander
dc.contributor.authorAnderlik, Simon
dc.contributor.authorStröbel, Robin
dc.contributor.authorFleischer, Jürgen
dc.contributor.authorWorthmann, Andreas
dc.date.accessioned2024-06-04T07:42:19Z
dc.date.available2024-06-04T07:42:19Z
dc.date.issued2024de
dc.date.updated2024-04-25T13:23:26Z
dc.description.abstractThis study addresses the challenge of the optimization of milling in industrial production, focusing on developing and applying a novel framework for optimising manufacturing processes. Recognising a gap in current methods, the research primarily targets the underutilisation of advanced data analysis and machine learning techniques in industrial settings. The proposed framework integrates these technologies to refine machining parameters more effectively than conventional approaches. The research method involved the development of the framework for the realisation and analysis of measurement data from milling machines, focusing on six machine parts and employing a machine learning system for optimization and evaluation. The developed and realised framework in the form of a software demonstrator showed its applicability in different experiments. This research enables easy deployment of data-driven techniques for sustainable industrial practices, highlighting the potential of this framework for transforming manufacturing processes.en
dc.description.sponsorshipMinistry of Science, Research and Arts of the Federal State of Baden-Württembergde
dc.identifier.issn2075-1702
dc.identifier.other1891234625
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144635de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14463
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14444
dc.language.isoende
dc.relation.uridoi:10.3390/machines12030153de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.subject.ddc670de
dc.titleFramework for holistic online optimization of milling machine conditions to enhance machine efficiency and sustainabilityen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungende
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten22de
ubs.publikation.sourceMachines 12 (2024), No. 153de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
machines-12-00153-v2.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: