Ein adaptierbares Rahmenwerk für die Annotation von Skalar- und Vektorfelddaten

dc.contributor.authorThull, Marian
dc.date.accessioned2018-01-12T08:03:06Z
dc.date.available2018-01-12T08:03:06Z
dc.date.issued2015de
dc.description.abstractDie manuelle Annotation von Skalar- und Vektorfelddaten zum Zwecke des überwachten maschinellen Lernens bedeutet einen hohen zeitlichen Aufwand. Zusätzlich verursachen die heute gängigen rechteckigen Selektionsregionen Ungenauigkeiten. Als Reaktion darauf wird ein System vorgestellt, das die Annotation mittels allgemeiner polygonaler Regionen ermöglicht. Es bietet die Möglichkeit, die Visualisierung der Skalar- bzw. Vektorfelder flexibel zu wechseln. Dazu wird ein entsprechendes Plugin-System realisiert. Ebenso ist es möglich, die Berechnungsmethode der Merkmalsvektoren schnell und einfach durch Plugins auszutauschen. Das Rahmenwerk unterstützt die Verwaltung von Annotationsprojekten. In Kombination mit dem Plugin-System für die Visualisierung der zu annotierenden Daten und die Generierung der Merkmalsvektoren ist ein flexibles und leistungsfähiges Rahmenwerk entstanden. Als theoretische Basis werden in dieser Arbeit einige maschinelle Lernverfahren und ihre Evaluation, Grundlagen der Merkmalsvektorkonstruktion und die Vektorfeldvisualisierung mit Line Integral Convolution eingeführt. Darauf folgt eine Beschreibung des entstandenen Systems und seine Auswertung, die den Vorteil der polygonalen Regionen gegenüber den Rechtecken belegen kann. Zum Schluss wird ein Ausblick auf mögliche Verbesserungen des Rahmenwerks gegeben.de
dc.description.abstractManual annotation of scalar and vector field data for supervised machine learning causes a large temporal effort. Additionally, the rectangular regions which are popular for selection today are responsible for inaccuracies. As a reaction a system is introduced that enables annotation with arbitrary polygonal regions. It offers the option to flexibly substitute the visualization of the scalar or vector field. Therefor a corresponding plugin system is realized. Likewise it is possible to substitute the method of feature vector calculation fast and easily through plugins. The framework supports the management of annotation projects. In combination with the plugin system for data visualization and feature vector calculation a flexible and powerful was developed. As a theoretical base, several machine learning algorithms and their evaluation as well as the foundations of feature vector engineering and vector field visualization with line integral convolution are introduced. This is followed by a description of the system and its evaluation, which can verify the advantage of the polygonal regions over the rectangles. Finally an outlook on possible improvements of the framework is given.en
dc.identifier.other500042187
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-95386de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/9538
dc.identifier.urihttp://dx.doi.org/10.18419/opus-9521
dc.language.isodede
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleEin adaptierbares Rahmenwerk für die Annotation von Skalar- und Vektorfelddatende
dc.title.alternativeAn adaptive framework for the annotation of scalar and vector field dataen
dc.typebachelorThesisde
ubs.fakultaetZentrale Einrichtungende
ubs.institutVisualisierungsinstitut der Universität Stuttgartde
ubs.publikation.seiten45de
ubs.publikation.typAbschlussarbeit (Bachelor)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Ein adaptierbares Rahmenwerk für die Annotation von Skalar- und Vektorfelddaten.pdf
Size:
1.07 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: