Rheology in the presence of carbon dioxide (CO2) to study the melt behavior of chemically modified polylactide (PLA)

dc.contributor.authorDörr, Dominik
dc.contributor.authorStandau, Tobias
dc.contributor.authorMurillo Castellón, Svenja
dc.contributor.authorBonten, Christian
dc.contributor.authorAltstädt, Volker
dc.date.accessioned2024-10-16T08:16:36Z
dc.date.available2024-10-16T08:16:36Z
dc.date.issued2020
dc.date.updated2020-06-10T05:05:14Z
dc.description.abstractFor the preparation of polylactide (PLA)-based foams, it is commonly necessary to increase the melt strength of the polymer. Additives such as chain extenders (CE) or peroxides are often used to build up the molecular weight by branching or even crosslinking during reactive extrusion. Furthermore, a blowing agent with a low molecular weight, such as carbon dioxide (CO2), is introduced in the foaming process, which might affect the reactivity during extrusion. Offline rheological tests can help to measure and better understand the kinetics of the reaction, especially the reaction between the polymer and the chemical modifier. However, rheological measurements are mostly done in an inert nitrogen atmosphere without an equivalent gas loading of the polymer melt, like during the corresponding reactive extrusion process. Therefore, the influence of the blowing agent itself is not considered within these standard rheological measurements. Thus, in this study, a rheometer equipped with a pressure cell is used to conduct rheological measurements of neat and chemical-modified polymers in the presence of CO2 at pressures up to 40 bar. The specific effects of CO2 at elevated pressure on the reactivity between the polymer and the chemical modifiers (an organic peroxide and as second choice, an epoxy-based CE) were investigated and compared. It could be shown in the rheological experiments that the reactivity of the chain extender is reduced in the presence of CO2, while the peroxide is less affected. Finally, it was possible to detect the recrystallization temperature Trc of the unmodified and unbranched sample by the torque maximum in the rheometer, representing the tear off of the stamp from the sample. Trc was about 13 K lower in the CO2-loaded sample. Furthermore, it was possible to detect the influences of branching and gas loading simultaneously. Here the influence of the branching on Trc was much higher in comparison to a gas loading.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.identifier.issn2073-4360
dc.identifier.other1907061630
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150738de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15073
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15054
dc.language.isoende
dc.relation.uridoi:10.3390/polym12051108de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titleRheology in the presence of carbon dioxide (CO2) to study the melt behavior of chemically modified polylactide (PLA)en
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Kunststofftechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten10de
ubs.publikation.sourcePolymers 12 (2020), No. 1108de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
polymers-12-01108-v2.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Plain Text
Description: