Lifetime modeling and model-based lifetime optimization of Li-ion batteries for use in electric two-wheelers

dc.contributor.advisorSawodny, Oliver (Prof. Dr.-Ing. Dr. h.c.)
dc.contributor.authorRechkemmer, Sabrina
dc.date.accessioned2020-08-21T10:20:58Z
dc.date.available2020-08-21T10:20:58Z
dc.date.issued2020de
dc.description.abstractThis thesis deals with the lifetime prediction of Li-ion batteries and the applicability of such models to optimize the operation and charging strategy. A model-based optimal control is therefore designed. The focus is on typical application scenarios for electric two-wheelers (E2W) in Shanghai. A realistic driving behavior is first derived to reflect the typical use of an E2W. A data acquisition campaign is conducted to capture the local conditions in Shanghai. Based on survey and fleet data, a typical driving cycle for E2W is designed in Shanghai. Models of the electric motor and power control in combination with vehicle-to-street characteristics are used to convert the recorded typical driving cycles to equivalent power profiles. The main focus is to investigate and model a Li-ion battery from a system perspective. Different model representations are compared regarding their applicability in simulation and optimization. An aging campaign is initiated to investigate the characteristics of a lithium manganese oxide (LMO) cell. Results for calendar and cycle aging are presented and compared to further cell chemistries. A single particle model as well as a simplified electrical equivalent circuit model are introduced and adapted to the cell results. The driving cycle and system model are incorporated into a model-based optimization strategy. Since the greatest optimization potential was identified during charging and storage, a combined optimal charging and operating strategy is described. The validity of the results is proven by further cell tests and compared with simulation results, which show that an extension of the lifetime is achieved. A heuristic operating strategy is then derived, which can also be implemented online on the E2W control unit.en
dc.identifier.isbn978-3-8440-7445-1
dc.identifier.other1727605594
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-109961de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10996
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10979
dc.language.isoende
dc.publisherDüren : Shaker Verlagde
dc.relation.ispartofseriesBerichte aus dem Institut für Systemdynamik, Universität Stuttgart;48
dc.relation.uridoi:10.2370/9783844074451de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleLifetime modeling and model-based lifetime optimization of Li-ion batteries for use in electric two-wheelersen
dc.typedoctoralThesisde
ubs.bemerkung.externDie vorliegende Arbeit entstand während der Zeit als wissenschaftliche Mitarbeiterin am Institut für Systemdynamik (ISYS) an der Universität Stuttgart sowie an der School of Mechanical Engineering (SME) an der Tongji University Shanghai im Zuge des Joint PhD Programms.de
ubs.dateAccepted2020-05-27
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Systemdynamikde
ubs.publikation.seitenxxxiii, 258de
ubs.publikation.typDissertationde
ubs.schriftenreihe.nameBerichte aus dem Institut für Systemdynamik, Universität Stuttgartde
ubs.thesis.grantorKonstruktions-, Produktions- und Fahrzeugtechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Rechkemmer2020_Diss_BatteryLifetimeOpt.pdf
Size:
13.56 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: