Active exploration and identification of kinematic devices

dc.contributor.authorMohrmann, Jochen
dc.date.accessioned2018-02-15T16:04:22Z
dc.date.available2018-02-15T16:04:22Z
dc.date.issued2016de
dc.description.abstractAs an important part of solving the lockbox problem, this thesis deals with the problem of identifying kinematic devices based on data generated using an Active Learning strategy. We model the belief over different device types and parameters using a discrete multinomial distribution. We discretize directions as a Geodesic sphere. This allows an isotropic distribution without being biased towards certain directions. The belief update is based on experience using a Bayes Filter. This allows to localize the correct states, even if an action fails to generate movement. Our action selection strategy aims to minimize the number of actions necessary to identify devices by considering the expected future belief. We evaluate the effectiveness of different information measures and compare them with a random strategy within a simulation. Our experiments show that the use of the MaxCE strategy creates the best results. We were able to correctly identify prismatic, revolute, and fixed devices in 3D space.en
dc.identifier.other501371885
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-96540de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/9654
dc.identifier.urihttp://dx.doi.org/10.18419/opus-9637
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleActive exploration and identification of kinematic devicesen
dc.typemasterThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.publikation.seiten68de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Jochen_Mohrmann_Thesis.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: