Comparison of different Hyperparameter-Tuners for Support Vector Machines : an analysis using Parallel Least-Squares SVM Library on GPU

dc.contributor.authorDzubba, Yannick Marian
dc.date.accessioned2024-07-16T10:19:01Z
dc.date.available2024-07-16T10:19:01Z
dc.date.issued2024de
dc.description.abstractWorking with large datasets requires sophisticated tools. One such tool developed for classification is the Support Vector Machine (SVM). As with any ML algorithm, the user has to set several different Hyper Parameter (HP) to run a SVM. Finding the optimal choice of HPs is important for model performance and it is highly dependent on the dataset. Given the number of different HPs, a search space might be massive, so optimization methods have been developed, to automate this search. This work aims to compare three popular choices: The Grid Search, the Random Search and Bayesian Model Search. They are compared in different metrics, such as performance, runtime and energy. Optuna [ASY+19] was used as optimizer backend, it implements all three optimizer types, it implements Tree-Parzan Estimator (TPE) as Bayesian Search algorithm. It was connected to Parallel Least-Squares Support Vector Machine (PLSSVM) [VCBP22] as SVM implementation. PLSSVM can efficiently exploit parallel compute cores. The optimizers have been tested on a selection of different search spaces and datasets with PLSSVM running on Graphic Processing Unit (GPU).en
dc.identifier.other1895622972
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-146744de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14674
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14655
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleComparison of different Hyperparameter-Tuners for Support Vector Machines : an analysis using Parallel Least-Squares SVM Library on GPUen
dc.title.alternativeVergleich von unterschiedlichen Hyperparameter-Tunern für Support Vector Machinesde
dc.typebachelorThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.publikation.seiten84de
ubs.publikation.typAbschlussarbeit (Bachelor)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2023_10_13_Yannick_Dzubba_Bachelorarbeit.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: