Reinforcement learning methods based on GPU accelerated industrial control hardware

dc.contributor.authorSchmidt, Alexander
dc.contributor.authorSchellroth, Florian
dc.contributor.authorFischer, Marc
dc.contributor.authorAllimant, Lukas
dc.contributor.authorRiedel, Oliver
dc.date.accessioned2023-04-25T09:37:11Z
dc.date.available2023-04-25T09:37:11Z
dc.date.issued2021de
dc.date.updated2023-03-25T04:00:08Z
dc.description.abstractReinforcement learning is a promising approach for manufacturing processes. Process knowledge can be gained automatically, and autonomous tuning of control is possible. However, the use of reinforcement learning in a production environment imposes specific requirements that must be met for a successful application. This article defines those requirements and evaluates three reinforcement learning methods to explore their applicability. The results show that convolutional neural networks are computationally heavy and violate the real-time execution requirements. A new architecture is presented and validated that allows using GPU-based hardware acceleration while meeting the real-time execution requirements.en
dc.description.sponsorshipBundesministerium für Bildung und Forschungde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.other1844980391
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130099de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13009
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12990
dc.language.isoende
dc.relation.uridoi:10.1007/s00521-021-05848-4de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleReinforcement learning methods based on GPU accelerated industrial control hardwareen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungende
ubs.publikation.seiten12191-12207de
ubs.publikation.sourceNeural computing and applications 33 (2021), S. 12191-12207de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00521-021-05848-4.pdf
Size:
965.71 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: