Protein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase

dc.contributor.authorJayaraman, Kumaresan
dc.contributor.authorTrachtmann, Natalia
dc.contributor.authorSprenger, Georg A.
dc.contributor.authorGohlke, Holger
dc.date.accessioned2024-11-08T10:12:04Z
dc.date.available2024-11-08T10:12:04Z
dc.date.issued2022de
dc.date.updated2024-10-24T08:24:32Z
dc.description.abstractThe shikimate pathway delivers aromatic amino acids (AAAs) in prokaryotes, fungi, and plants and is highly utilized in the industrial synthesis of bioactive compounds. Carbon flow into this pathway is controlled by the initial enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS). AAAs produced further downstream, phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), regulate DAHPS by feedback inhibition. Corynebacterium glutamicum, the industrial workhorse for amino acid production, has two isoenzymes of DAHPS, AroF (Tyr sensitive) and AroG (Phe and Tyr sensitive). Here, we introduce feedback resistance against Tyr in the class I DAHPS AroF (AroFcg). We pursued a consensus approach by drawing on structural modeling, sequence and structural comparisons, knowledge of feedback-resistant variants in E. coli homologs, and computed folding free energy changes. Two types of variants were predicted: Those where substitutions putatively either destabilize the inhibitor binding site or directly interfere with inhibitor binding. The recombinant variants were purified and assessed in enzyme activity assays in the presence or absence of Tyr. Of eight AroFcg variants, two yielded > 80% (E154N) and > 50% (P155L) residual activity at 5 mM Tyr and showed > 50% specific activity of the wt AroFcg in the absence of Tyr. Evaluation of two and four further variants at positions 154 and 155 yielded E154S, completely resistant to 5 mM Tyr, and P155I, which behaves similarly to P155L. Hence, feedback-resistant variants were found that are unlikely to evolve by point mutations from the parental gene and, thus, would be missed by classical strain engineering.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.de
dc.description.sponsorshipBundesministerium für Ernährung und Landwirtschaft (BMEL)de
dc.description.sponsorshipHeinrich-Heine-Universität Düsseldorfde
dc.identifier.issn0175-7598
dc.identifier.issn1432-0614
dc.identifier.other1909651974
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152426de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15242
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15223
dc.language.isoende
dc.relation.uridoi:10.1007/s00253-022-12166-9de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleProtein engineering for feedback resistance in 3-deoxy-D-arabino-heptulosonate 7-phosphate synthaseen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Mikrobiologiede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten6505-6517de
ubs.publikation.sourceApplied microbiology and biotechnology 106 (2022), S. 6505-6517de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s00253-022-12166-9.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: