CLAIRE : parallelized diffeomorphic image registration for large-scale biomedical imaging applications

dc.contributor.authorHimthani, Naveen
dc.contributor.authorBrunn, Malte
dc.contributor.authorKim, Jae-Youn
dc.contributor.authorSchulte, Miriam
dc.contributor.authorMang, Andreas
dc.contributor.authorBiros, George
dc.date.accessioned2024-03-18T15:24:56Z
dc.date.available2024-03-18T15:24:56Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:12:03Z
dc.description.abstractWe study the performance of CLAIRE - a diffeomorphic multi-node, multi-GPU image-registration algorithm and software-in large-scale biomedical imaging applications with billions of voxels. At such resolutions, most existing software packages for diffeomorphic image registration are prohibitively expensive. As a result, practitioners first significantly downsample the original images and then register them using existing tools. Our main contribution is an extensive analysis of the impact of downsampling on registration performance. We study this impact by comparing full-resolution registrations obtained with CLAIRE to lower resolution registrations for synthetic and real-world imaging datasets. Our results suggest that registration at full resolution can yield a superior registration quality-but not always. For example, downsampling a synthetic image from 10243 to 2563 decreases the Dice coefficient from 92% to 79%. However, the differences are less pronounced for noisy or low contrast high resolution images. CLAIRE allows us not only to register images of clinically relevant size in a few seconds but also to register images at unprecedented resolution in reasonable time. The highest resolution considered are CLARITY images of size 2816×3016×1162. To the best of our knowledge, this is the first study on image registration quality at such resolutions.en
dc.description.sponsorshipNational Science Foundationde
dc.description.sponsorshipNVIDIA Corporation (NVIDIA GPU Grant Program)de
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG, German Research Foundation)de
dc.description.sponsorshipU.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Researchde
dc.description.sponsorshipU.S. Air Force Office of Scientific Researchde
dc.description.sponsorshipPortugal Foundation for Science and Technology and the UT Austin–Portugal programde
dc.description.sponsorshipNIHde
dc.identifier.issn2313-433X
dc.identifier.other1883989949
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141027de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14102
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14083
dc.language.isoende
dc.relation.uridoi:10.3390/jimaging8090251de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleCLAIRE : parallelized diffeomorphic image registration for large-scale biomedical imaging applicationsen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten33de
ubs.publikation.sourceJournal of imaging 8 (2022), No. 251de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
jimaging-08-00251-v2.pdf
Size:
5.51 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: