Optimization of a clamping concept based on machine learning

dc.contributor.authorFeng, Qi
dc.contributor.authorMaier, Walther
dc.contributor.authorStehle, Thomas
dc.contributor.authorMöhring, Hans-Christian
dc.date.accessioned2023-04-06T08:02:57Z
dc.date.available2023-04-06T08:02:57Z
dc.date.issued2021de
dc.date.updated2023-03-25T19:55:10Z
dc.description.abstractFixtures are an important element of the manufacturing system, as they ensure productive and accurate machining of differently shaped workpieces. Regarding the fixture design or the layout of fixture elements, a high static and dynamic stiffness of fixtures is therefore required to ensure the defined position and orientation of workpieces under process loads, e.g. cutting forces. Nowadays, with the increase in computing performance and the development of new algorithms, machine learning (ML) offers an appropriate possibility to use regression methods for creating realistic, rapid and reliable equivalent ML models instead of simulations based on the finite element method (FEM). This research work introduces a novel method that allows an optimization of clamping concepts and fixture design by means of ML, in order to reduce manufacturing errors and to obtain an increased stiffness of fixtures and machining accuracy. This paper describes the preparation of a dataset for training ML models, the systematic selection of the most promising regression algorithm based on relevant criteria, the implementation of the chosen algorithm Extreme Gradient Boosting (XGBoost) and other comparable algorithms, the analysis of their regression results, and the validation of the optimization for a selected clamping concept.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipMinisterium für Wissenschaft, Forschung und Kunst Baden-Württembergde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn0944-6524
dc.identifier.issn1863-7353
dc.identifier.other1843078066
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-129339de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12933
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12914
dc.language.isoende
dc.relation.uridoi:10.1007/s11740-021-01073-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleOptimization of a clamping concept based on machine learningen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Werkzeugmaschinende
ubs.publikation.seiten9-22de
ubs.publikation.sourceProduction engineering 16 (2022), S. 9-22de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s11740-021-01073-z.pdf
Size:
3.36 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: