A probabilistic approach to characterizing drought using satellite gravimetry

dc.contributor.authorSaemian, Peyman
dc.contributor.authorTourian, Mohammad J.
dc.contributor.authorElmi, Omid
dc.contributor.authorSneeuw, Nico
dc.contributor.authorAghaKouchak, Amir
dc.date.accessioned2024-10-31T10:06:05Z
dc.date.available2024-10-31T10:06:05Z
dc.date.issued2024de
dc.date.updated2024-10-15T19:04:01Z
dc.description.abstractIn the recent past, the Gravity Recovery and Climate Experiment (GRACE) satellite mission and its successor GRACE Follow‐On (GRACE‐FO), have become invaluable tools for characterizing drought through measurements of Total Water Storage Anomaly (TWSA). However, the existing approaches have often overlooked the uncertainties in TWSA that stem from GRACE orbit configuration, background models, and intrinsic data errors. Here we introduce a fresh view on this problem which incorporates the uncertainties in the data: the Probabilistic Storage‐based Drought Index (PSDI). Our method leverages Monte Carlo simulations to yield realistic realizations for the stochastic process of the TWSA time series. These realizations depict a range of plausible drought scenarios that later on are used to characterize drought. This approach provides probability for each drought category instead of selecting a single final category at each epoch. We have compared PSDI with the deterministic approach (Storage‐based Drought Index, SDI) over major global basins. Our results show that the deterministic approach often leans toward an overestimation of storage‐based drought severity. Furthermore, we scrutinize the performance of PSDI across diverse hydrologic events, spanning continents from the United States to Europe, the Middle East, Southern Africa, South America, and Australia. In each case, PSDI emerges as a reliable indicator for characterizing drought conditions, providing a more comprehensive perspective than conventional deterministic indices. In contrast to the common deterministic view, our probabilistic approach provides a more realistic characterization of the TWS drought, making it more suited for adaptive strategies and realistic risk management.en
dc.description.sponsorshipDFGde
dc.identifier.issn1944-7973
dc.identifier.issn0043-1397
dc.identifier.other1909015210
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-151835de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15183
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15164
dc.language.isoende
dc.relation.uridoi:10.1029/2023WR036873de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc624de
dc.titleA probabilistic approach to characterizing drought using satellite gravimetryen
dc.typearticlede
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutGeodätisches Institutde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceWater resources research 60 (2024), No. e2023WR036873de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
WRCR_WRCR27408.pdf
Size:
3.57 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: