A complementary experimental and theoretical approach for probing the surface functionalization of ZnO with molecular catalyst linkers

dc.contributor.authorKousik, Shravan R.
dc.contributor.authorSolodenko, Helena
dc.contributor.authorYazdanYar, Azade
dc.contributor.authorKirchhof, Manuel
dc.contributor.authorSchützendübe, Peter
dc.contributor.authorRichter, Gunther
dc.contributor.authorLaschat, Sabine
dc.contributor.authorFyta, Maria
dc.contributor.authorSchmitz, Guido
dc.contributor.authorBill, Joachim
dc.contributor.authorAtanasova, Petia
dc.date.accessioned2023-11-08T10:10:58Z
dc.date.available2023-11-08T10:10:58Z
dc.date.issued2023de
dc.date.updated2023-10-10T19:46:17Z
dc.description.abstractThe application of ZnO materials as solid-state supports for molecular heterogeneous catalysis is contingent on the functionalization of the ZnO surface with stable self-assembled monolayers (SAMs) of catalyst linker molecules. Herein, experimental and theoretical methods are used to study SAMs of azide-terminated molecular catalyst linkers with two different anchor groups (silane and thiol) on poly and monocrystalline (0001, ) ZnO surfaces. Angle-resolved and temperature-dependent X-ray photoelectron spectroscopy (XPS) is used to study SAM binding modes, thermal stabilities, and coverages. The binding strengths and atomistic ordering of the SAMs are determined via atom-probe tomography (APT). Density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations provide insights on the influence of the ZnO surface polarity on the interaction affinity and conformational behavior of the SAMs. The investigations show that SAMs based on 3-azidopropyltriethoxysilane possess a higher binding strength and thermal stability than the corresponding thiol. SAM surface coverage is strongly influenced by the surface polarity of ZnO, and the highest coverage is observed on the polycrystalline surface. To demonstrate the applicability of linker-modified polycrystalline ZnO as a catalyst support, a chiral Rh diene complex is immobilized on the azide-terminal of the SAM and its coverage is evaluated via XPS.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn2196-7350
dc.identifier.other1870748727
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-137366de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13736
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13717
dc.language.isoende
dc.relation.uridoi:10.1002/admi.202300399de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.titleA complementary experimental and theoretical approach for probing the surface functionalization of ZnO with molecular catalyst linkersen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutInstitut für Organische Chemiede
ubs.institutInstitut für Computerphysikde
ubs.institutMax-Planck-Institut für Intelligente Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten14de
ubs.publikation.sourceAdvanced materials interfaces 10 (2023), No. 2300399de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADMI_ADMI803.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: