Analysis of mixed uncertainty through possibilistic inference by using error estimation of reduced order surrogate models

dc.contributor.authorKönecke, Tom
dc.contributor.authorHose, Dominik
dc.contributor.authorFrie, Lennart
dc.contributor.authorHanss, Michael
dc.contributor.authorEberhard, Peter
dc.date.accessioned2023-12-12T13:39:23Z
dc.date.available2023-12-12T13:39:23Z
dc.date.issued2022de
dc.description.abstractIn the context of solving inverse problems, such as in statistical inference, an efficient repeated evaluability of a system can be achieved through methods of model order reduction. However, quantifying and adequately representing the emerging reduction error requires special techniques for combining different sources of uncertainty. In this paper, parametric finite element models are reduced through parametric model order reduction. The induced approximation error, an epistemic uncertainty, is reasonably estimated with the help of modern estimators for formulating statistical statements about the parameters to be identified. Measurement noise is also taken into account as a source of aleatory uncertainty. As a novel extension to analyzing a single source of uncertainty, the construction of a basic workflow for parameter identification in the face of both epistemic and aleatory uncertainties is presented, combining efficient error estimation techniques and possibilistic inference. The general applicability of this procedure is highlighted by two illustrative applications.en
dc.identifier.isbn978-90-828931-5-1
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-138301de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13830
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13811
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleAnalysis of mixed uncertainty through possibilistic inference by using error estimation of reduced order surrogate modelsen
dc.typeconferenceObjectde
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.konferenznameInternational Conference on Uncertainty in Structural Dynamics (9., 2022, Löwen)de
ubs.publikation.noppnyesde
ubs.publikation.sourceProceedings of ISMA2022 - International Conference on Noise and Vibration Engineering/USD2022 - International Conference on Uncertainty in Structural Dynamics. Heverlee : KU Leuven, 2022. - ISBN 978-90-828931-5-1, S. 4825-4837de
ubs.publikation.typKonferenzbeitragde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
KoeneckeEtAl22.pdf
Size:
600.64 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: