Simulation meets real-world : deep reinforcement learning on inverted pendulum system

dc.contributor.authorBantel, Linus
dc.date.accessioned2024-05-21T13:10:57Z
dc.date.available2024-05-21T13:10:57Z
dc.date.issued2023de
dc.description.abstractIn this thesis, we investigate the differences between the idealized gymnasium cartpole environment and a real cartpole with the aim to train robust agents in the simulation, that perform well in realworld tasks. In this work, we not only consider the classical upright task, but also the so-called swingup. Models for friction and force are implemented and their effectiveness is evaluated on the real cartpole. The robustness of an agent with regards to changing parameters of the cartpole is also examined and possible solutions presented.en
dc.identifier.other1889500488
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144032de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14403
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14384
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleSimulation meets real-world : deep reinforcement learning on inverted pendulum systemen
dc.typemasterThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Parallele und Verteilte Systemede
ubs.publikation.seiten59de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2023_11_30_Linus_Bantel.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: