One‐step thermal gradient‐ and antisolvent‐free crystallization of all‐inorganic perovskites for highly efficient and thermally stable solar cells

dc.contributor.authorByranvand, Mahdi Malekshahi
dc.contributor.authorKodalle, Tim
dc.contributor.authorZuo, Weiwei
dc.contributor.authorMagorian Friedlmeier, Theresa
dc.contributor.authorAbdelsamie, Maged
dc.contributor.authorHong, Kootak
dc.contributor.authorZia, Waqas
dc.contributor.authorPerween, Shama
dc.contributor.authorClemens, Oliver
dc.contributor.authorSutter‐Fella, Carolin M.
dc.contributor.authorSaliba, Michael
dc.date.accessioned2024-08-20T07:05:31Z
dc.date.available2024-08-20T07:05:31Z
dc.date.issued2022de
dc.date.updated2023-11-14T01:27:25Z
dc.description.abstractAll‐inorganic perovskites have emerged as promising photovoltaic materials due to their superior thermal stability compared to their heat‐sensitive hybrid organic–inorganic counterparts. In particular, CsPbI2Br shows the highest potential for developing thermally‐stable perovskite solar cells (PSCs) among all‐inorganic compositions. However, controlling the crystallinity and morphology of all‐inorganic compositions is a significant challenge. Here, a simple, thermal gradient‐ and antisolvent‐free method is reported to control the crystallization of CsPbI2Br films. Optical in situ characterization is used to investigate the dynamic film formation during spin‐coating and annealing to understand and optimize the evolving film properties. This leads to high‐quality perovskite films with micrometer‐scale grain sizes with a noteworthy performance of 17% (≈16% stabilized), fill factor (FF) of 80.5%, and open‐circuit voltage (VOC) of 1.27 V. Moreover, excellent phase and thermal stability are demonstrated even after extreme thermal stressing at 300 °C.en
dc.description.sponsorshipGerman Research Foundationde
dc.description.sponsorshipHelmholtz Young Investigator Groupde
dc.description.sponsorshipGerman Research Foundationde
dc.description.sponsorshipOffice of Sciencede
dc.description.sponsorshipU.S. Department of Energyde
dc.description.sponsorshipMaterials Sciences and Engineering Divisionde
dc.description.sponsorshipNational Research Foundation of Koreade
dc.identifier.issn2198-3844
dc.identifier.other1899183574
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-148525de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14852
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14833
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/786483de
dc.relation.uridoi:10.1002/advs.202202441de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.subject.ddc660de
dc.titleOne‐step thermal gradient‐ and antisolvent‐free crystallization of all‐inorganic perovskites for highly efficient and thermally stable solar cellsen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutInstitut für Photovoltaikde
ubs.institutZentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten12de
ubs.publikation.sourceAdvanced science 9 (2022), No. 2202441de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADVS_ADVS4188.pdf
Size:
3.78 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: