Enhancing character type detection using coreference information : experiments on dramatic texts

dc.contributor.advisorKuhn, Jonas (Prof. Dr.)
dc.contributor.authorPagel, Janis
dc.date.accessioned2024-10-08T08:49:37Z
dc.date.available2024-10-08T08:49:37Z
dc.date.issued2024de
dc.description.abstractThis thesis describes experiments on enhancing machine-learning based detection of literary character types in German-language dramatic texts by using coreference information. The thesis makes four major contributions to the research discourse of character type detection and coreference resolution for German dramatic texts: (i) a corpus of annotations of coreference on dramatic texts, called GerDraCor-Coref, (ii) a rule-based system to automatically resolve coreferences on dramatic texts, called DramaCoref, as well as experiments and analyses of results by using DramaCoref on GerDraCor-Coref, (iii) experiments on the automatic detection of three selected character types (title characters, protagonists and schemers) using machine-learning approaches, and (iv) experiments on utilizing the coreference information of (i) and (ii) for improving the performance of character type detection of (iii).en
dc.identifier.other190508076X
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-150190de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15019
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15000
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc400de
dc.subject.ddc830de
dc.titleEnhancing character type detection using coreference information : experiments on dramatic textsen
dc.typedoctoralThesisde
ubs.dateAccepted2023-11-17
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Maschinelle Sprachverarbeitungde
ubs.publikation.seitenxxx, 200de
ubs.publikation.typDissertationde
ubs.thesis.grantorInformatik, Elektrotechnik und Informationstechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
thesis.pdf
Size:
4.97 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: