Bayesian estimation reveals that reproducible models in systems biology get more citations

dc.contributor.authorHöpfl, Sebastian
dc.contributor.authorPleiss, Jürgen
dc.contributor.authorRadde, Nicole E.
dc.date.accessioned2025-05-20T14:58:31Z
dc.date.issued2023
dc.date.updated2024-11-26T08:24:58Z
dc.description.abstractThe Systems Biology community has taken numerous actions to develop data and modeling standards towards FAIR data and model handling. Nevertheless, the debate about incentives and rewards for individual researchers to make their results reproducible is ongoing. Here, we pose the specific question of whether reproducible models have a higher impact in terms of citations. Therefore, we statistically analyze 328 published models recently classified by Tiwari et al. based on their reproducibility. For hypothesis testing, we use a flexible Bayesian approach that provides complete distributional information for all quantities of interest and can handle outliers. The results show that in the period from 2013, i.e., 10 years after the introduction of SBML, to 2020, the group of reproducible models is significantly more cited than the non-reproducible group. We show that differences in journal impact factors do not explain this effect and that this effect increases with additional standardization of data and error model integration via PEtab. Overall, our statistical analysis demonstrates the long-term merits of reproducible modeling for the individual researcher in terms of citations. Moreover, it provides evidence for the increased use of reproducible models in the scientific community.en
dc.description.sponsorshipProjekt DEAL
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn2045-2322
dc.identifier.other1928946992
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-164050de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16405
dc.identifier.urihttps://doi.org/10.18419/opus-16386
dc.language.isoen
dc.relation.uridoi:10.1038/s41598-023-29340-2
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc020
dc.subject.ddc570
dc.titleBayesian estimation reveals that reproducible models in systems biology get more citationsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnik
ubs.fakultaetChemie
ubs.institutInstitut für Systemtheorie und Regelungstechnik
ubs.institutInstitut für Biochemie und Technische Biochemie
ubs.publikation.seiten12
ubs.publikation.sourceScientific reports 13 (2023), No. 2695
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
s41598-023-29340-2.pdf
Size:
3.9 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: