Deep learning for scatterplot similarity

dc.contributor.authorMaalouly, Jad
dc.date.accessioned2022-02-08T09:12:49Z
dc.date.available2022-02-08T09:12:49Z
dc.date.issued2021de
dc.description.abstractThrough the technology of generative models, one can now learn a distribution of his input data and generate new and similar output where it mimics the behavior of his input. Variational Auto-Encoders (VAE) are generative models where the neural network tries to learn a distribution of the latent vector I. Disentanglement using VAE’s tries to decouple the latent vector and render each dimension independent from the other. Using disentanglement we wish to learn the three basic visual properties size, shape, and color. All the different disentangled models used in this paper aim to refine the reconstruction and disentangled representation. After training our models the user will have control over the three properties. Next, wish to create a tool where the user can control the structural properties of a scatterplot. By simply training a disentangled model, we would like to gain control over the different structures of a scatterplot to generate similar data. Furthermore, we will be discussing the limitations and shortcomings of using such models.en
dc.identifier.other1789204275
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-119483de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11948
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11931
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleDeep learning for scatterplot similarityen
dc.typemasterThesisde
ubs.fakultaetZentrale Einrichtungende
ubs.institutVisualisierungsinstitut der Universität Stuttgartde
ubs.publikation.seiten48de
ubs.publikation.typAbschlussarbeit (Master)de

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
thesis_Maalouly.pdf
Size:
2.67 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.39 KB
Format:
Item-specific license agreed upon to submission
Description: