Forecasting next year's global land water storage using GRACE data

dc.contributor.authorLi, Fupeng
dc.contributor.authorKusche, Jürgen
dc.contributor.authorSneeuw, Nico
dc.contributor.authorSiebert, Stefan
dc.contributor.authorGerdener, Helena
dc.contributor.authorWang, Zhengtao
dc.contributor.authorChao, Nengfang
dc.contributor.authorChen, Gang
dc.contributor.authorTian, Kunjun
dc.date.accessioned2024-10-31T15:16:21Z
dc.date.available2024-10-31T15:16:21Z
dc.date.issued2024de
dc.date.updated2024-10-15T17:12:28Z
dc.description.abstractExisting approaches for predicting total water storage (TWS) rely on land surface or hydrological models using meteorological forcing data. Yet, such models are more adept at predicting specific water compartments, such as soil moisture, rather than others, which consequently impedes accurately forecasting of TWS. Here we show that machine learning can be used to uncover relations between nonseasonal terms of Gravity Recovery and Climate Experiment (GRACE) derived total water storage and the preceding hydrometeorological drivers, and these relations can subsequently be used to predict water storage up to 12 months ahead, and even exceptional droughts on the basis of near real‐time observational forcing data. Validation by actual GRACE observations suggests that the method developed here has the capability to forecast trends in global land water storage for the following year. If applied in early warning systems, these predictions would better inform decision‐makers to improve current drought and water resource management.en
dc.description.sponsorshipDeutsches Zentrum für Luft‐und Raumfahrtde
dc.description.sponsorshipNational Natural Science Foundation of Chinade
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipChina Postdoctoral Science Foundationde
dc.identifier.issn1944-8007
dc.identifier.issn0094-8276
dc.identifier.other1908137843
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-151920de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15192
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15173
dc.language.isoende
dc.relation.uridoi:10.1029/2024GL109101de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc500de
dc.titleForecasting next year's global land water storage using GRACE dataen
dc.typearticlede
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutGeodätisches Institutde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten11de
ubs.publikation.sourceGeophysical research letters 51 (2024), No. e2024GL109101de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
GRL_GRL68101.pdf
Size:
2.48 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: