Monitoring of tool and component wear for self-adaptive Digital Twins : a multi-stage approach through anomaly detection and wear cycle analysis

dc.contributor.authorStröbel, Robin
dc.contributor.authorBott, Alexander
dc.contributor.authorWortmann, Andreas
dc.contributor.authorFleischer, Jürgen
dc.date.accessioned2024-05-15T07:50:15Z
dc.date.available2024-05-15T07:50:15Z
dc.date.issued2023de
dc.date.updated2024-04-25T13:24:13Z
dc.description.abstractIn today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. This paper presents a novel approach for monitoring tool and component wear in CNC milling machines by segmenting and classifying individual machining cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a progressive increase in tool wear between cycles. The algorithms effectively segment and classify cycles based on path length, spindle speed and cycle duration. The tool condition index for each cycle is determined by considering all axis signals, with upper and lower thresholds established for quantifying tool conditions. The same approach is adapted to predict component wear progression in machine tools, ensuring robust condition determination. A percentage-based component state description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This method provides a four-class estimation of the component state. The approach has demonstrated robustness in various validation cases.en
dc.description.sponsorshipContinuously Quality-aware Digital Twinsde
dc.description.sponsorshipthe Ministry of Science, Research and Arts of the Federal State of Baden-Württembergde
dc.identifier.issn2075-1702
dc.identifier.other1889320250
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143839de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14383
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14364
dc.language.isoende
dc.relation.uridoi:10.3390/machines11111032de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleMonitoring of tool and component wear for self-adaptive Digital Twins : a multi-stage approach through anomaly detection and wear cycle analysisen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungende
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten27de
ubs.publikation.sourceMachines 11 (2023), No. 1032de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
machines-11-01032-v2.pdf
Size:
10.81 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: